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The dynamical phase diagram of the fractional Langevin equation is investigated for a harmonically bound
particle. It is shown that critical exponents mark dynamical transitions in the behavior of the system. Four
different critical exponents are found. �i� �c=0.402�0.002 marks a transition to a nonmonotonic underdamped
phase, �ii� �R=0.441. . . marks a transition to a resonance phase when an external oscillating field drives the
system, and �iii� ��1

=0.527. . . and �iv� ��2
=0.707. . . mark transitions to a double-peak phase of the “loss”

when such an oscillating field present. As a physical explanation we present a cage effect, where the medium
induces an elastic type of friction. Phase diagrams describing over and underdamped regimes, with or without
resonances, show behaviors different from normal.
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I. INTRODUCTION

In this paper we investigate the phenomenological de-
scription of stochastic processes using a fractional Langevin
equation �FLE� �1–8�. While in simple systems the memory
friction kernel is an exponentially decaying function or a �
function, in complex out-of-equilibrium systems the picture
is in some cases different. Namely, the relaxation is of a
power law type, and the particle may exhibit anomalous dif-
fusion and relaxation �9�. Mathematically, such systems are
modeled using fractional calculus, e.g., d1/2

dt1/2 . An example is
the recent experiment on protein dynamics of Xie and co-
workers �10,11�. There anomalous dynamics of the coordi-
nate x describing donor-acceptor distance was recorded, and
a FLE �see Sec. II� was found to describe the experimental
data. The motion of x is bounded by a harmonic force field,
and the equation of motion for the average �x� is

�ẍ� + �2�x� + �
d��x�
dt� = 0, �1�

where 0���1, � is the harmonic frequency, and �	0. For
the case �=1 we get the usual damped oscillator �12�. For
such a normal case, two types of behavior, the underdamped
and overdamped motions, are found. In the underdamped
case �x� is oscillating and crossing the zero line, while for the
overdamped case �x� is monotonically decaying with no zero
crossing. For �=1, there exists a critical frequency �c= �

2
that separates these two types of motion. Here we explore a
similar scenario for the fractional oscillator, and find rich
types of physical behaviors. It is known �13� that in the long-
time limit all solutions �x� �i.e., for any 0��, 0��, and
0��� decay monotonically, somewhat like the overdamped
behavior of the usual oscillator; however, now the decay is of
power law type. The interesting physics occurs at shorter
times where the solution may exhibit different types of re-
laxations and oscillations. We find that for ���c the solu-
tion is nonmonotonic for any set of parameters �� ,�	0�.
Thus we find a critical � that marks a dynamical transition in
the behavior of the system.

We also investigate the response of a system described by
Eq. �1� to an external oscillating force F0 cos�
t�. For the
regular case of �=1, a resonance is present if the frequency

� is larger than the critical value � /�2. The behavior for 0
���1 is quite different, and we discover that the transition
between �→1 and �→0 is not smooth. In particular, we
find another critical exponent �R, where for ���R a reso-
nance is always present. Other critical exponents are found
for the imaginary part of the complex susceptibility. Our goal
is to clarify the nature of the solution to Eq. �1�, investigate
the meaning of the fractional critical frequency with and
without external oscillating force, and provide a mathemati-
cal toolbox for finding and plotting solutions of Eq. �1�. Our
finding that critical �’s mark dynamical transitions is very
surprising and could not be obtained without our mathemati-
cal treatment.

The paper is organized as follows. In Sec. II we present
the FLE. In Sec. III we present two different methods for
solution and examples are solved in Sec. IV. In Sec. V we
present different definitions for overdamped and under-
damped motion and find the critical exponent �c. We also
interpret our results from a more physical point of view and
discuss the cage effect as a viscoelastic property of the me-
dium. In Sec. VI we introduce an external oscillating force
into the system and find the response to such a force for free
�Sec. VI A� and harmonically bound �Sec. VI B� particles. In
Sec. VI C we investigate the properties of the “loss”—the
imaginary part of the complex susceptibility. A summary is
provided in Sec. VII, and the three Appendixes deal with
some technical aspects. A brief summary of some of our
results has been published �14�.

II. THE MODEL

We consider the FLE

m
d2x�t�

dt2 + �̄�
0

t 1

�t − t���

dx

dt�
dt� = F�x,t� + ��t� , �2�

where �̄	0 is a generalized friction constant
��= 1

m �̄ ��1−���, 0���1 is the fractional exponent, ��t� is
a stationary, fractional, Gaussian noise �15–17� satisfying the
fluctuation-dissipation relation �18,19�
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���t�� = 0, ���t���t��� = kbT�̄	t − t�	−�, �3�

and F�x , t� is an external force. We follow the experiment
�11� and assume F�x , t�=−m�2x; later in Sec. VI we will
have F�x , t�=−m�2x+F0 cos�
t�. In Laplace space it is easy
to show, using the convolution theorem, that

x̂�s� =
s + �1/m��s�

s2 + �1/m�s�s� + �2x0 +
1

s2 + �1/m�s�s� + �2v0

+
1

s2 + �1/m�s�s� + �2��s� , �4�

where x0 and v0 are initial conditions and

�s� = �̄ ��1 − ��s�−1. �5�

Throughout this work, the variable in parentheses defines the
space we are working in �e.g., x̂�s� is the Laplace transform
of x�t��. Equation �2� with �= 1

2 and F�x , t�=−m�2x de-
scribes single-protein dynamics �11�. An experimentally
measurable quantity is the normalized correlation function

Cx�t� =
�x�t�x�0��

�x�0�2�
. �6�

In what follows, thermal initial conditions are assumed,
���t�x�0��=0, �x�0�2�=kbT /m�2, and �x�0�v�0��=0. From
Eq. �4� we find

Ĉx�s� =
s + �s�−1

s2 + �s� + �2 . �7�

It is easy to show that Cx�t� satisfies the following fractional
equation:

C̈x�t� + �2Cx�t� + �
d�Cx�t�

dt� = 0, �8�

with the initial conditions Cx�0�=1 and Ċx�0�=0, where the
fractional derivative is defined in the Caputo sense as �20,21�

d�f�t�
dt� = 0Dt

�−1
df�t�
dt

� �9�

and 0Dt
�−1 is the Riemann-Liouville fractional operator

�20,21�

0Dt
�−1f�t� =

1

��1 − ���0

t

�t − t�−�f�t�dt . �10�

Note that another way to write Eq. �2� is

ẍ + �
d�x

dt� + �2x = ��t�; �11�

hence the name fractional Langevin equation is justified. For
a force-free particle �F�x , t�=0 in Eq. �2��, �x2�� t� �7,22�;
this is subdiffusive behavior since 0���1.

The FLE in general and Eq. �8� in particular can be de-
rived from the Kac-Zwanzig model of a Brownian particle
coupled to a harmonic bath �23�. The correlation function
Cx�t� as described by Eq. �8� can be derived also from the
fractional Kramers equation �24�; however, the fractional

Kramers equation does not correspond to a Gaussian process
and the higher moments would differ from the FLE descrip-
tion. The use of fractional-differential equations like Eqs. �8�
and �11� became quite common in recent years �9,25�, for
example in fields like fracture surfaces �26� and especially in
the context of anomalous diffusion �9,27,28�. Several other
fractional oscillator equations have been considered in the
literature �29–31�, and general solutions for fractional-
differential equations of the type Eq. �8� have been studied in
the mathematical literature �21,32,33�. In the next section we
present a practical recipe, a toolbox, for the solution of Eq.
�8�, and show how to plot its solution. Our methods are
general and can be applied to other linear fractional differ-
ential equations. From a more physical point of view the
following questions are addressed in the next sections. �i�
When is Cx�t� positive �i.e., similar to overdamped behavior,
�=1�? �ii� When is Cx�t� nonmonotonic �similar to under-
damped motion for �=1�? �iii� What is the analog to the
critical frequency �c= �

2 found for the �=1 case? �iv� Does a
critical exponent �c exist, and if so what is its value?

III. THE GENERAL SOLUTION

In this section we will present a recipe for an analytical
solution of Eq. �8�. The formula for Cx�t� in Laplace space is
Eq. �7�, and if � were an integer then it would be simple to
perform an Inverse Laplace transform using analysis of poles
�34,35�, because then the denominator of Eq. �7� would be a
polynomial. We assume � is of the form �= p

q , where q	 p
	0 are integers and p

q is irreducible �i.e., not equal to some
other l

n where l� p and n�q are integers�.

A. Method A

We rewrite Eq. �7� as

Ĉx�s� =
s + �sp/q−1

s2 + �sp/q + �2

Q̂�s�

Q̂�s�
=

�s + �sp/q−1�Q̂�s�

P̂�s�
, �12�

where P̂�s� is a polynomial in s. According to a mathematical

theorem �21� we can always find Q̂�s� such that the denomi-
nator of Eq. �12�,

P̂�s� = �s2 + �sp/q + �2�Q̂�s� , �13�

is a regular polynomial in s. The polynomial Q̂�s� is called

the complementary polynomial. The task of finding Q̂�s� is

simple: Q̂�s� is a polynomial in s1/q of degree 2q�q−1�,

Q̂�s� = �
m=0

2q�q−1�

Bmsm/q �14�

with B2q�q−1�=1. The coefficients Bm are found by equating
all the coefficients with noninteger powers of s in the expan-

sion of the product Q̂�s��s2+�sp/q+�2� to zero. This pro-
duces a linear system of 2q�q−1� equations for 2q�q−1�
variables, which in principle is a solvable problem.

We also assume that all 2q zeros of P̂�s� are distinct. The
generalization to the case where the zeros are not distinct
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will be treated later; such behavior is related to a critical
frequency of the system. We use the partial fraction expan-
sion

1

P̂�s�
= �

k=1

2q
Ak

s − ak
, �15�

where ak are the solutions of P̂�s�=0 and Ak are constants
defined as

Ak =
1

 dP̂�s�

ds


s=ak

. �16�

It can be shown �21� that

sm

P̂�s�
= �

k=1

2q
ak

mAk

s − ak
, m = 0,1, . . . ,2q − 1. �17�

The numerator of Eq. �12� is written using the expansion

Q̂�s��s + �sp/q−1� = �
m=0

2q−1

�
j=0

q−1

B̃mjs
m−j/q. �18�

Hence using Eqs. �12�, �15�, and �18�

Ĉx�s� = �
m=0

2q−1

�
j=0

q−1

�
k=1

2q
ak

mB̃mjAk

s − ak
s−j/q. �19�

So finally we have reduced the problem of calculating the
inverse Laplace transform of Eq. �7� to performing the in-
verse Laplace transform for

1

s − ak
•–� eakt �20�

and

1

sj/q�s − ak�
•–�

eakt

�� j
q�ak

j/q�
 j

q
,akt� , �21�

where �� j
q ,akt� is a tabulated incomplete gamma function

�36� and f̂�s� •–� f�t� means that f̂�s� and f�t� are Laplace
pairs. Using the series expansion for ��a ,x�,

��a,x� = ��a�xae−x�
n=0

�
xn

��a + n + 1�
,

we can write Eq. �21� by means of the generalized Mittag-
Leffler function �37�

1

sj/q�s − ak�
•–� tj/qE1,1+j/q�akt� . �22�

The Mittag-Leffler function satisfies

E�,��y� = �
n=0

�
yn

���n + ��
�23�

with

E�,��y� � −
y−1

��� − ��
y → � . �24�

To summarize, in order to perform the inverse Laplace trans-
form of expressions like Eq. �7�, we need to follow four

steps. �i� Calculate Q̂�s�, which is equivalent to the diagonal-
ization of a matrix of size �2q�q−1��2. �ii� Find the zeros of

P̂�s� and ak, and the coefficients of the partial fraction ex-

pansion Ak of Eq. �16�. �iii� Find the coefficients B̃mj for Eq.

�18� and write Ĉx�s� as the sum in Eq. �19�. �iv� Use Eqs.
�20�–�22� to perform the inverse Laplace transform of Eq.
�19�. Finally, we find

Cx�t� = �
m=0

2q−1

�
j=0

q−1

�
k=1

2q
ak

m−j/qB̃mjAke
akt

��j/q�
�
 j

q
,akt� , �25�

where for j=0, �� j
q ,akt� /�� j

q �=1, or using Eq. �22�

Cx�t� = �
m=0

2q−1

�
j=0

q−1

�
k=1

2q

ak
mB̃mjAkt

j/qE1,1+j/q�akt� �26�

and for j=0 E1,1+j/q�akt�=eakt. Now we have a practical tool
for finding an explicit analytical solution for the fractional
damped harmonic oscillator. Since ��a ,x� is tabulated in pro-
grams like MATHEMATICA, the solution, which is a finite sum
of such incomplete gamma functions, can be plotted.

B. Method B

The task of finding Q̂�s� is sometimes difficult since, as
described in Sec. III A, generally one must solve a linear
system of 2q�q−1� equations with 2q�q−1� variables. But
for the special case of Eq. �7� we will provide a simple

method for finding Q̂�s� and P̂�s�. By writing

Cx�t� =
s + �sp/q−1

�s2 + �2�q + �− 1�q−1�qsp
 �s2 + �2�q + �− 1�q−1�qsp

s2 + �sp/q + �2 � ,

�27�

we can write

Q̂�s� =
�s2 + w2�q + �− 1�q−1�qsp

s2 + �sp/q + w2 �28�

and

P̂�s� = �s2 + �sp/q + w2�Q̂�s� = �s2 + �2�q + �− 1�q−1�qsp.

�29�

One easily sees that indeed P̂�s� is a polynomial in s. As

for Q̂�s�, it is found by the standard method of division of
two polynomials in s1/q and it is also a polynomial in s1/q.
Since the fraction of two polynomials

�y2q + �2�q + �− 1�q−1�qyqp

y2q + �yp + �2 �30�

is also a polynomial in y, we see that any solution of y2q

+�yp+�2=0 is also a solution of �y2q+w2�q+ �−1�q−1�qyqp
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=0, and by performing the substitution y=s1/q into Eq. �30�
we find that indeed Q̂�s� is a polynomial in s1/q. After finding

Q̂�s� and P̂�s� explicitly, we can return to method A and use
Eqs. �15�–�26� in order to write down the final solution.

IV. EXAMPLES �=1 Õ2 AND �=3 Õ4

A. �=1 Õ2

The �= 1
2 case was recently measured in experiment �11�,

and so it will be our first illustration for the method. From
Eq. �7� we get

Ĉx�s� =
s + �s−1/2

s2 + �s1/2 + �2 . �31�

The first step is to find the complementary polynomial of the
denominator on the right-hand side of Eq. �31�. Using
method A of the previous section, one can easily see that the

coefficients of the complementary polynomial Q̂�s� are

B4 = 1, B3 = B2 = 0, B1 = − �, B0 = �2

and

Q̂�s� = s2 − �s1/2 + �2, �32�

since

P̂�s� = Q̂�s��s2 + �s1/2 + �2� = s4 + 2�2s2 − �2s + �4.

�33�

We rewrite Eq. �31� as

Ĉx�s� =
s3 + s�2 − �2 + ��2s−1/2

�s2 + �2�2 − �2s
�34�

and notice that the degree of the denominator of Eq. �34�,
i.e., P̂�s�, is 4. Its zeros are easily found using the Ferrari
formula �36�, and we call them ak, k=1, . . . ,4. The coeffi-
cients of the partial fraction expansion Ak are given by Eq.
�16�,

Ak =
1

4ak�ak
2 + �2� − �2 . �35�

The partial fraction expansion is found using Eq. �19�,

Ĉx�s� = �
m=0

3

�
j=0

1

�
k=1

4
ak

mB̃mjAk

s − ak
s−j/q, �36�

and the B̃mj in Eq. �18� are found using the numerator of Eq.
�34�,

B̃30 = 1, B̃10 = �2, B̃00 = − �2, B̃01 = ��2. �37�

The other elements of the matrix B̃mj are equal to 0. Using
Eq. �25� the solution is

Cx�t� = �
k=1

4

��− �2 + �2ak + ak
3�Ake

akt + ��2Akt
1/2E1,3/2�akt�� .

�38�

By using a series expansion and some algebra we find ak,
and Eq. �38� has the following asymptotic behavior:

Cx�t� =�1 −
1

2
�2t2 +

��2

�� 9
2� t7/2, t → 0,

�

�2�� 1
2� t−1/2 − 
 �

�2�3 t−3/2

2�� 1
2� , t → � .� �39�

We see that Cx�t� for long times decays as a power law,
which is the signature of slow relaxation and anomalous dif-
fusion. The same asymptotic results are found by applying
Tauberian theorems �38� to Eq. �31�.

The asymptotic expansion Eq. �39� provides the behavior
for long �and short� times, but the intermediate behavior is
not obvious. Using the exact solution Eq. �38� we plot Cx�t�
for various values of � in Fig. 1. Three types of behavior
exist: �i� Monotonic decay of the solution—Fig. 1�a�; �ii�
nonmonotonic decay in the non-negative half of the plane
Cx�t��0—Fig. 1�b�; and �iii� oscillations of the solution,
where Cx�t� also takes negative values—Fig. 1�c�. These are
typical behaviors of the solution which we found also in
other parameter sets �not shown�. From Fig. 1 we identify
�=�z=1.053 as a fractional critical point, in the sense that if
�	�z we have zero crossings for Cx�t�. For �= 1

2 there ex-
ists also another fractional critical point �m=0.426 where for
���m Cx�t� is monotonically decaying—Fig. 1�a�. We will
soon discuss �z and �m more generally.
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FIG. 1. �Color online� Short-time behavior for Cx�t� with �
=1 /2 and �=1, versus t. Three types of solutions are presented: �a�
�=0.3 and the function decays monotonically; �b� �=�z�1.053,
the transition between motion with and without zero crossing,
Cx�t�=0 at a single point in time, and Cx�t� does not cross the zero
line; �c� �=3, the underdamped regime. Note that, for large t,
Cx�t�	0.
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B. �=3 Õ4

In this section we demonstrate the solution for �= 3
4 using

method B. Our goal is to invert Eq. �7�,

Ĉx�s� =
s + �s3/4−1

s2 + �s3/4 + w2 . �40�

We find the complementary polynomials Q̂�s� and P̂�s�, us-
ing Eqs. �28� and �29�,

P̂�s� = �s2 + �2�4 − �4s3 �41�

and

Q̂�s� =
�s2 + �2�4 − �4s3

s2 + �s3/4 + �2

= s6 − �s19/4 + 3�2s4 + �2s7/2 − 2�2�s11/4 − �3s9/4

+ 3�4s2 + �2�2s3/2 − ��4s3/4 + �6, �42�

and so we can write Eq. �40� as

Ĉx�s� =
s7 + 3�2s5 + ��2s15/4 + 3�4s3 − �2�2s5/2 − �4s2 + 2��4s7/4 + �3�2s5/4 + �6s − �2�4s1/2 + ��6s−1/4

�s2 + �2�4 − �4s3 . �43�

The degree of the denominator of Eq. �43� is 8, so the zeros

of the polynomial P̂�s� could only be found numerically us-
ing a program like MATHEMATICA. As in the previous section,

we call the zeros of P̂�s� ak, k=1, . . . ,8, and the coefficients
of the partial fraction expansion Ak are found using Eq. �16�,

Ak =
1

8ak�ak
2 + �2�3 − 3�4ak

2 . �44�

Writing the partial fraction expansion using Eq. �19�,

Ĉx�s� = �
m=0

7

�
j=0

3

�
k=1

8
ak

mB̃mjAk

s − ak
s−j/q, �45�

where the coefficients B̃mj are found using the numerator of
Eq. �43�,

B̃ =�
0 ��6 0 0

�6 0 − �2�4 0

− �4 2��4 0 �3�2

3�4 0 − �2�2 0

0 ��2 0 0

3�2 0 0 0

0 0 0 0

1 0 0 0

� . �46�

Using Eq. �25� the solution is

Cx�t� = �
k=1

8

Ake
akt�ak�

6 − ak
2�4 + 3ak

3�4 + 3ak
5�2 + ak

7�

+ Ake
akt
��� 1

4 ,akt�
�� 1

4� ��6ak
−1/4 + 2�4ak

7/4 + �2ak
15/4�

+
�2�� 1

2 ,akt�
�� 1

2� ��4ak
1/2 + �2ak

5/2� +
�2ak

5/4�3�� 3
4 ,akt�

�� 3
4� � ,

�47�

or using Eq. �26�

Cx�t� = �
k=1

8

Ake
akt�ak�

6 − ak
2�4 + 3ak

3�4 + 3ak
5�2 + ak

7�

+ Ak��t1/4E1,5/4�akt���6 + 2�4ak
2 + �2ak

4�

+ �2t1/2E1,3/2�akt���4ak + �2ak
3�

+ �2ak
2t3/4�3E1,7/4�akt�� . �48�

The behavior described by Eq. �48� is plotted in Fig. 2. Three
typical types of behavior are shown, which are similar to the
behavior for the �= 1

2 case �Fig. 1�. The values of critical
points for �= 3

4 are �m�0.707 �and so for �=0.3 we observe
in Fig. 2�a� a monotonic decay� and �z�0.965, a case plot-
ted in Fig. 2�b�. Finally the case �= 1

5 is shown in Fig. 3. The
difference between �= 1

5 and the former cases is that for �
= 1

5 �m=0 and so we never observe a monotonic decay of the
solution. More generally, this behavior is obtained for any
���c�0.402, as we shall soon show.

V. DEFINITION OF OVER AND UNDERDAMPED
MOTION

As mentioned in the introduction, when dealing with the
normal damped oscillator one gets two types of solutions—
overdamped and underdamped, the transition between these
two behaviors happens at some point �c called the critical
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point. For the overdamped motion �x�	0 for any t when
�x�t=0��	0, and there are no oscillations, and for the under-
damped case �x�t�� oscillates and crosses the zero line. For
the fractional oscillator, we notice that there are different
types of behaviors. From Figs. 1–3 one notices that for short
times there is an oscillating behavior either with and without
zero-crossings or a monotonic decay type of behavior. So as
in the regular damped oscillator we need to define the tran-

sition between these behaviors. We propose three definitions
for the point of transition between overdamped and under-
damped motions, these are based on the various definitions
that exist for the regular damped oscillator and give the same
result for �=1. The first option is to take the frequency �c

for which two solutions of P̂�s�=0 coincide, i.e., an appear-

ance of a pole of a second order for Ĉx�s�, and the general
solution of Sec. III must be modified, as explained in Appen-
dix A. The second option is to take the minimal frequency �z
at which the solution Cx�t� crosses the zero line and the third
is to take the minimal frequency �m at which

dCx�t�
dt crosses

the zero line �i.e., Cx�t� is no longer a monotonically decay-
ing function�. For regular damped oscillator �c=�z=�m, but
in fractional case this is generally not true.

Another difference between the fractional oscillator and
the regular one is the distinction between short and long time
behavior when 0���1. The asymptotic behavior for gen-
eral � is obtained using general properties of polynomial
solutions �21� with Eq. �23� and Eq. �24� or using the Taub-
erian theorem �38�

Cx�t� � 1 −
1

2
�2t2 +

�2�

��5 − ��
t4−� t → 0 �49�

Cx�t� �
�

�2��1 − ��
t−� t → � �50�

where the large t expression was obtained in �11,13,17�. The
applicability of Eq. �50� is possible only under two condi-
tions, the first one is obvious from Eq. �50� and is


�2

�
�1/�

t � 1, �51�

while the second is

	a	t � 1, �52�

where 	a	 is an absolute value of a zero of the enumerator in

Eq. �7� �s2+�s�+�2�, it also could be found from P̂�s�=0.
Mathematically the second condition is the magnitude of the
radius of convergence for the power series expansion of

Ĉx�s� near s=0 �Tauberian Theorem�, and is given by the

non-fictitious poles of Ĉx�s�. From Eq. �50�, Cx�t�	0 and for
large t it decays as a power-law.

From a more physical point of view, the FLE formalism
was used �11� to describe the fluctuation of the distance be-
tween a fluorescein-tyrosine pair within a single protein on a
time scales of 1 msec up to 102 sec, and a power-law decay
was observed �lately a theoretical model of Fractons was
proposed in order to explain such phenomena �44��. Recent
molecular dynamics simulations �45� studied the fluctuations
of a donor-acceptor distance for a single protein, for short
time scales 10−9 sec and oscillations of the autocorrelation
function were observed. The scenario of oscillations for
short-times and a power-law decay for long-times sets well
with the description by our solutions of the FLE.
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FIG. 2. �Color online� Short-time behavior for Cx�t� with �
=3 /4 and �=1, versus t. Three types of solutions are presented: �a�
�=0.3 and the function decays monotonically; �b� �=�z�0.965,
the transition between motion with and without zero crossing, Cx�t�
does not cross the zero line; �c� �=3, the underdamped regime.
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FIG. 3. �Color online� Short-time behavior for Cx�t� with �
=1 /5 and �=1, versus t. Three types of solutions are presented: �a�
�=0.3 and the function oscillates above zero; �b� �=�z=1.035, the
transition between motion with and without zero crossing, Cx�t�
does not cross the zero line; �c� �=3, oscillations with zero cross-
ing for short times; for long times Cx�t�	0 and no oscillations are
observed. For this case solutions with monotonic decay are not
found since �=1 /5��c=0.402.
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A. Critical point �c

For the case �= 1
2 we have four solutions for P̂�s�

=0 �ak k=1, . . . ,4� which are plotted in Fig. 4. At one point
two solutions coincide, we call this point the critical point at
which �=�c. For �=�c, the solution for Cx�t� Eq. �38� must
be modified because our general method derived Sec. III is
not valid. For �= 1

2 and �=�c= 1
22/3

��3 /2��1 /2�1/3�2/3 �see
Eq. �59�� Eq. �38� is �see Appendix, Eq. �A11��

Cx�t� = �
m=0

3

�
j=0

1

B̃mjt
j/2��

k=1

3

ak
mAkE1,1+ j

2
�akt� + a3

mÃ

�
�t + ma3
−1�E1,1+j/2�a3t� −

j

2
tE1,2+j/2�a3t���

�53�

where a1�a2�a3 and a4=a3 are zeros of P̂�s� given by Eq.

�33�, B̃mj are found using Eq. �37�, A1 and A2 by Eq. �35�,
A3=−�A1+A2� by Eq. �87� and Ã is defined in Eq. �88�.

We emphasize that the critical point �c does not always

exist. In Fig. 5 we plot the 10 solutions of P̂�s�=0 for �= 2
5 ,

and demonstrate that no two solutions coincide. We will soon
show that for any odd q and even p the critical point �c does
not exist.

Mathematically at critical points one of the coefficients of
partial fractions expansion, Ak in Eq. �16�, diverges. This

happens because when two ak coincide, P̂�s� can be written

as �s−ak�2Ĝ�s�, where Ĝ�s� is some polynomial in s and
G�ak��0, and

Ak =
1


2�s − ak�Ĝ�s� + �s − ak�2
dĜ�s�

ds
�

s=ak

�54�

diverges. And so in order to find such critical point two con-
ditions must be satisfied
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FIG. 4. �Color online� Four so-

lutions of P̂�ak�=0 in the imagi-
nary plane for �=1 /2, �=1, and
0���5. At the critical point �
=�c=0.6873 we have a3=a4.
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FIG. 5. �Color online� Ten so-

lutions of P̂�ak�=0 for �=2 /5,
and �=1, in the imaginary plane,
for 0���5. All ten solutions are
different and do not coincide;
namely, for this case there does
not exist a critical frequency �c

since q=5 is odd. The origin cor-
responds to �=0.
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P̂�s� = 0,
dP̂�s�

ds
= 0. �55�

Using Eq. �29� with �= p
q and �=�c,

�s2 + �c
2�q + �− 1�q−1�qsp = 0 �56�

2qs�s2 + �c
2�q−1 + p�− 1�q−1�qsp−1 = 0. �57�

Solving these Eqs. we find

s = �� �

2 − �
�c �58�

and �c must satisfy

�c =
1

21/�2−��
��2 − ����/�2−���1/�2−��. �59�

Equation �58� and Eq. �59� are only valid for even q or even
�q+ p� �recall �= �p /q� and �p /q� is irreducible�, since for
any other case Eqs. �56� and �57� has no solutions. The +
sign in Eq. �58� is for the case of even q and odd p and the
− sign for odd q and p. To see this, insert the solution Eq.
�58� in Eq. �56� and then we must have �−1�q−1�0 and
hence q even, since �p /q� is irreducible p is odd. Similarly
for the − sign in Eq. �58�. From this discussion it becomes
clear why there are no critical frequency �c for �= �2 /5�
�Fig. 5�.

B. Critical points �z and �m

We divide the phase space to three different regions. �I�
0����m the region where Cx�t� decays monotonically �II�
�m����z the region of nonmonotonic decay while Cx�t�

always stays positive �III� �z�� the region of nonmono-
tonic decay while part of the time Cx�t� is negative. Similar
to Eq. �59� we find from dimensional analysis

�z = �z����1/�2−�� �60�

and

�m = �m����1/�2−�� �61�

where �z��� and �m��� depend only on �. By investigating
analytical solution Eq. �26� for various � and �=1 we obtain
functions �z��� and �m���. The resulting phase diagram is
presented in Fig. 6. One can readily see that �z, �m and �c
defined by Eq. �59� all coincide only for the normal case �
=1.

An interesting behavior is observed for �m���, as can be
seen in Fig. 6 a sort of phase transition occurs around
��0.4. We used the general method developed in Sec. III
and explored the behavior of 1

�2

dCx�t�
dt , which in Laplace space

is given by

1

�2 �sĈx�s� − 1� = −
1

s2 + �s� + �2 . �62�

For ��0.4 we always observed zero crossings for
�dCx�t� /dt� even if we decreased � to 10−7 ��=1�, while for
��0.404 there were no zero crossings beneath some finite
�	0, as is shown in Fig. 6. So we conclude that there exist
a critical �, �c�0.402�0.002, where for ���c Cx�t� does
not decay monotonically even if the frequency of the binding
harmonic field �→0. Note that the phase diagram Fig. 6
also exhibits some expected behaviors: as we increase � we
find a critical line above which the solutions are nonmono-
tonic and exhibit zero crossing, a line represented by �z���.
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0

0.2

0.4

0.6

0.8

1

1.2

α

ω

Monotonic Decay

Oscillations + Zero-Crossings

Nonmonotonic
decay without
Zero-Crossing

FIG. 6. �Color online� Phase diagram of the fractional oscillator. Phase �a� monotonic decay of the correlation function Cx�t�, phase �b�
nonmonotonic decay without zero crossing, and phase �c� oscillations with zero crossings. The boundary between �b� and �c� is �z=�z���
�solid line + squares�; the boundary between �a� and �b� is �m=�m��� �solid line + circles�. For ���c�0.402, the phase of monotonic decay
disappears, namely, we do not find overdamped behavior. The dotted curve is the critical line �c given by Eq. �59�. All the curves are
calculated for �=1. For �=1, �c=�z=�m=� /2.
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To find accurate values of �c we also used a method based
on the Bernstein theorem �38�. According to the theorem, if
and only if f�t� is positive then for any integer n

0 � �− 1�ndnf̃�s�
dsn �s 	 0� , �63�

where f̃�s� is the Laplace pair of f�t�. As in the previous
paragraph, in order to check the monotonicity of Cx�t�, we
will inspect 1

�2

dCx�t�
dt for zero crossings, or, speaking in the

language of the Bernstein theorem, explore �−1�n dnf̃�s�
dsn , when

− f̃�s� is given by Eq. �62�. Using the scaling relation of Eq.
�61� we can set �=1, and so it is easily checked that for n

=0 and n=1 �−1�n dnf̃�s�
dsn 	0, for any 0���1. But for n=2

�− 1�ndnf̃�s�
dsn =

1

�s2 + s� + �2�3 �6s2 + �9� − �2 − 2�s�

+ ��2 + ��s2�−2 − �2�2 + ��� − 1��s�−2� ,

�64�

and in the limit �→0 one can easily show that for �
�0.071 Eq. �64� has negative values. Actually, for �=0.01 it
is easily verified �by plotting Eq. �64�� that for any �	0 Eq.
�64� would have negative values. So for n=2 we have an
upper bound for �, ��2��0.071, where for any ����2� dCx�t�

dt
crosses the zero line and the relaxation is nonmonotonic. If
one wishes to increase the accuracy for such an upper bound

one should inspect the behavior of �−1�n dnf̃�s�
dsn for higher val-

ues of n; for any n we define such a bound as ��n�. Using
MATHEMATICA we can proceed to higher values of n and find
the upper bound ��n� for different �. In Fig. 7 we plotted the
upper bounds as a function of n for various �; we see that as
n grows the upper bound ��n� converges to some value �1.
The results achieved by this method converge to values very
close to the values displayed in Fig. 6; for example, for �
=0 and n=150 ��150�=0.394, compared with �c�0.402, ob-
tained by inspection of the exact solution.

C. Cage effect

A physical explanation for this interesting result is based
on the cage effect. For small � the friction force induced by
the medium is not just slowing down the particle but also
causing the particle to develop a rattling motion. To see this,
consider Eq. �8� in the limit �→0,

mC̈x�t� + m��Cx�t� − Cx�0�� + m�2Cx�t� = 0, �65�

where from Eq. �6� Cx�0�=1. Equation �65� describes har-
monic motion and the friction � in this �→0 limit yields an
elastic harmonic force. In this sense the medium is binding
the particle, preventing diffusion but forcing oscillations. In
the opposite limit of �→1,

mC̈x�t� + m�Ċx�t� + m�2x = 0, �66�

the usual damped oscillator is found. So from Eq. �65� an
oscillating behavior is expected, even when �→0, which
can be explained by the rattling motion of a particle in the
cage formed by the surrounding particles. This behavior
manifests in the nonmonotonic oscillating solution we have
found for small �. Our finding that �c marks a nonsmooth
transition between normal friction �→1 and elastic friction
�→0 is certainly a surprising result.

The existence of a cage effect for small enough � is ob-
served not only for the correlation function but also for other
quantities. In the next section we will show the existence of
an oscillating mode for the complex susceptibility. Such a
mode appears for high enough frequencies and low enough
�’s. The existence of an oscillating mode coincides with the
description of Eq. �65� for the correlation function and em-
phasizes that such an oscillatory motion is not due to a spe-
cific properties of the measured quantity but rather due to the
complex interaction of the particle with the medium as de-
scribed by the friction term.

VI. RESPONSE TO AN EXTERNAL FIELD

In this section we will explore the response of the FLE to
an external time-dependent force. The response of a system
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FIG. 7. �Color online� Upper
bound ��n� as a function of n, the
number of the derivatives, found
using the Bernstein method. We
consider three different � ��=0,
1/2, and 7/10�. The dashed lines
present the values found numeri-
cally in Fig. 6. As n grows, a con-
vergence of the bound is achieved,
as is seen for �=0 as ��n� con-
verges to �c�0.402�0.002.
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to an oscillating time-dependent field naturally leads to the
phenomenon of resonances, when the frequency of the exter-
nal field matches a natural frequency of the system. The
response of subdiffusing systems to such a time-dependent
field has been the subject of intensive research �39–41�. In
particular, the fractional approach to subdiffusion naturally
leads to anomalous response functions commonly found in
many systems e.g., the Cole-Cole relaxation �28,42,43�. In
the next three sections we will explore the response of the
FLE with and without the harmonic potential and also inves-
tigate the behavior of the imaginary part of the complex
susceptibility, i.e., the dielectric loss, for these cases.

Our starting point is Eq. �2� with F�x , t�=F0 cos�
t�
−m�2x; performing an average we obtain

�ẍ� + �
d��x�
dt� + �2�x� =

F0

m
cos�
t� . �67�

The solution in the long-time regime is

�x�t�� �
F0

m
�

0

t

cos�
�t − t���h�t��dt�, �68�

where h�t� is soon defined. Equation �68� is written as

�x�t�� = R�
�cos�
t + ��
��, t → � . �69�

The response R�
� and the phase shift ��
� are obtained by
means of the complex susceptibility

��
� = ���
� + i���
� = ĥ�− i
� , �70�

where ���
� and ���
� are the complex and the imaginary

parts of the susceptibility, respectively, and ĥ�−i
�
=�o

�ei
th�t�dt �19�. For the response

R�
� = 	��
�	 , �71�

and

��
� = arctan
−
���
�
���
�

� �72�

for the phase shift.

A. Unbound particle

For the unbound particle we set �=0 in Eq. �67� and
using Eq. �4� we obtain for ��
�

��
� = ĥ�− i
� =
1

��− i
�� − 
2 . �73�

By the use of Eq. �71� we can explicitly obtain now the
behavior of R�
� for any 0���1. For the normal diffusion
case when �=1, the response R�
� is a decaying function of

 and no resonance is observed, but the picture is quite
different for 0���1. In this subdiffusive part the response
R�
� is not always a monotonically decaying function and
could obtain a maximum, i.e., a resonance, even for such a
free motion. As is seen in Fig. 8, for small enough �, R�
�
has a resonance; we will show that the existence of the reso-
nance does not depend on any other parameter but �.

Writing down the response R�
� explicitly, we have

R�
� =
1

�
4 + �2
2� − 2�
2+� cos���/2�
. �74�

We are looking for the solutions of dR�
� /d
=0, and hence

4
R
3 + 2��2
R

2�−1 − 2�� + 2��
R
�+1 cos
��

2
� = 0,

�75�

so the solution is

�


R
2−� =

1

2�
��� + 2�cos
��

2
�

���� + 2�2cos2
��

2
� − 8�� , �76�

and 
R is the frequency for which the resonance is found.
When the discriminant on the right of Eq. �76� is greater than
zero there will be a resonance. The discriminant has no de-
pendence on �, and is always positive for ���R
=0.441 021. . ., which satisfies the relation

��R + 2�2cos2
��R

2
� − 8�R = 0. �77�

So no resonance is found for �	�R, and for ���R there is
always an 
R	0 for which the response will exhibit a reso-
nance. This result of a resonance for a free particle FLE is
highly unexpected, but agrees well with our description of
the friction force for small � as an elastic force due to the
cage effect.

B. Harmonically bound particle

Now we treat the response function of the FLE with a
harmonic field, i.e., that of a fractional oscillator. Starting
with Eq. �67�, we set the initial conditions x0=v0=0 and in
the long-time limit t→� we obtain again �x�=R�
�cos�
t
+��
�� where R�
� and ��
� are defined by Eqs. �71� and
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FIG. 8. �Color online� Response of FLE to an oscillating field
for a free particle and different �’s. For ���R a resonance is ob-
served. All the curves are plotted with �=1.
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�72�. The complex susceptibility for this case is obtained as

��
� =
1

��2 − 
2� + ��− i
�� . �78�

Equation �78� was already obtained �46–48� for the frac-
tional Klein-Kramers equation �24� in the high-damping
limit and is called a generalized Rocard equation �49,50�. For
�=1 we find the complex susceptibility of a normal damped
oscillator.

We are interested in the resonance points for the response
to the applied field, i.e., points of maximum of R�
�, which
generally depend on 
, �, and � �see Fig. 9�. For the normal
oscillator there is a resonance if the condition ��

1
�2

� is
satisfied. If this condition is not satisfied, R�
� is a mono-
tonically decreasing function of 
. From Eqs. �71� and �78�

R�
� =
1

���2 − 
2�2 + �2
2� + 2��2 − 
2��
� cos���/2�
,

�79�

and using dR�
� /d
=0 we find

2�
 �


R
2−��2

+ �2�
 �2


R
2 − 1� − 4�

�cos
��

2
� �


R
2−� − 4
 �2


R
2 − 1� = 0. �80�

The exploration of Eq. �80� �see Appendix B� leads to two
findings which are presented in Fig. 10. The first one is the
existence of the same critical �R given by Eq. �77� for the
response of the FLE with a harmonic potential, i.e., for any
���R there always exists a specific 
R �which depends on
� and �� for which the system is in resonance. The second
finding is that above �R we have a well-defined boundary
between a phase for which the resonance exists—a resonance
phase— and a phase where there is no resonance—a no-
resonance phase �see Fig. 10�. For ���R the no-resonance
phase does not exists. The boundary is given by the follow-
ing relation:
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FIG. 9. �Color online� Re-
sponse of FLE to an oscillating
field for a harmonically bound
particle and different �. �a� �
=0.2, �=1, and �=1. �b� �=0.2,
�=1, and �=10. �c� �=0.7, �=1,
and �=10. �d� �=0.7, �=7, and
�=10.
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FIG. 10. �Color online� Phase
diagram of the response of the
system with a harmonic field to an
oscillating time-dependent force
field. Two simple behaviors are
found: either a resonance exists
�resonance phase� or not �no-
resonance phase�. For ���R

=0.441. . . a resonance exists for
any binding harmonic field and
any friction �.
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�

�1/�2−�� = g��� , �81�

and the phase diagram is presented in Fig. 10. The function
g��� is found analytically �see Appendix B�,

g��� = c���−1/�2−���c���2 − c���cos���/2��1 + 2
�� + 2/�

2/� − c���cos���/2�
,

�82�

where c��� is given by Eq. �B13�. As is seen from Fig. 10 for
� /�1/�2−��	g��� a resonance phase is obtained, and the no-
resonance phase for � /�1/�2−���g���. In the limit of �→1
the boundary goes to the expected value for a damped oscil-
lator, 1 /�2. Near the critical point �R, the g��� drops to zero
as a power law with exponent ½,

g��� � �� − �R�1/2, � → �R. �83�

The existence of the same critical �R for a free and a har-
monically bound particle is easily understood from the phase
diagram in Fig. 10. Choosing the straight line �=0, which
represents the free particle, and going along this line, when
starting at the resonance phase we will cross to the no-
resonance phase exactly for �=�R. Generally speaking, the
same critical �R will be obtained for any kind of external
force because it is determined by the internal properties of
the surrounding medium represented by the friction part in
the FLE. The phase diagram in Fig. 10 has much in common
with the phase diagram in Fig. 6, which is quite reasonable
because of the strong connection between nonmonotonic de-
cay of the correlation Cx�t� and existence of a resonance. The
presence of a resonance for small enough � emphasizes the
previously obtained result of nonexistence of the over-
damped limit for such �. Those properties are due to the
same cage effect that we already discussed.

C. Complex susceptibility

Equation �78� for the complex susceptibility can be writ-
ten in the following form:

��
� = ���
� + i���
�

=
��2 − 
2� + �
� cos���/2�

��2 − 
2�2 + �2
2� + 2���2 − 
2�
� cos���/2�

+ i
�
� sin���/2�

��2 − 
2�2 + �2
2� + 2���2 − 
2�
� cos���/2�
.

�84�

The real and the imaginary parts of the susceptibility are
experimentally measured quantities for many systems, and
so it is interesting to explore their behavior for the FLE. In
this section we will explore the behavior of the imaginary
part ���
�, which is also called the loss. From Fig. 11, we
observe interesting behavior of ���
� for different �’s; not
only is one peak present as is expected for the normal oscil-
lator, but we observe a double-peak phenomenon for some
�’s. The double-peak phenomenon of the loss for super-
cooled liquids and protein solutions is a well-known phe-
nomenon �51–53� and usually treated by means of mode-
coupling theory �52�. We define two phases for the behavior
of ���
� and in the following find the phase diagram for
���
�. The first phase is the phase where ���
� has only one
peak, the one-peak phase, and a double-peak phase, where
the double-peak phenomenon is observed.

In Appendix C we explore d���
� /d
 and search for the
boundaries between the one-peak and double-peak phases.
The result is presented in Fig. 12. The boundaries between
the phases are given by analytical functions g̃1��� and g̃2���
which are dependent only on �. Two critical � are found for
such a phase diagram, the first one ��1

=0.527. . . for which
the boundary g̃1��� drops to zero, and a second one ��2
=0.707. . . for which g̃1��� and g̃2��� coincide �see Fig. 11�.
We also must note that near ��1

g̃1��� behaves as g̃1���
� ��−��1�1/2, a behavior that was also observed for g��� and
�m��� near the corresponding critical points.

The double-peak phenomenon in our case is explained in
the same sense as the existence of resonance for small
enough � and the disappearance of the monotonic decay
phase for the correlation function were explained. The reason
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FIG. 11. �Color online� Imagi-
nary part of the complex suscepti-
bility for various �. A double-
peak phenomenon is observed. �a�
�=0.66, �=1.8, and �=0.7. �b�
�=0.5, �=10, and �=2. �c� �
=0.63, �=10, and �=2. �d� �
=0.8, �=10, and �=2.
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is the same: the friction becomes more of an elastic force for
such small-� embedding oscillations in the system. Such a
claim is emphasized by the Cole-Cole plots of the complex
susceptibility, presented in Fig. 13. For �=0.8 the behavior
is very much as for a normal damped oscillator, a Debye
model �19�, for small enough � /�1/�2−�� �large friction� as in
Fig. 13�c�, i.e., a monotonic behavior for the relaxation; and
a Van Vleck–Weisskopf–Fröhlich type of behavior �19� for a
large value of � /�1/�2−�� �small friction� as in Fig. 13�d�, i.e.,
an oscillating behavior of the relaxation. These two proto-
types of the normal complex susceptibility correspond to the
presence of a single characteristic frequency in the system, or
a single time scale if we are concerned with correlations. For
small �, such as �=0.1 in Fig. 13�a�, we see a coexistence of
these two types of normal susceptibility. The right side of
Fig. 13�a� corresponds to a Debye type, a monotonically de-
caying process, and the left side to a Van Vleck–Weisskopf–
Fröhlich type, which shows highly oscillating behavior even
in the case when � and � are the same as for Fig. 13�c�.
Effectively, for small � we have two characteristic frequen-
cies in the system; the lower is responsible for the monotonic
decay and the higher frequency is an oscillating process. For

intermediate � we have some mixed behavior—Fig. 13�b�.
This oscillating behavior that is seen in Fig. 13�a� is the
manifestation of the cage effect which we already explained
as the rattling motion of the surrounding particles and is
present in the FLE due to the friction force.

VII. SUMMARY

The fractional Langevin equation with power law
memory kernel and 0���1 is a stochastic framework de-
scribing anomalous subdiffusive behavior. This equation may
be expressed in terms of fractional derivatives and so pro-
vides an example of a physical phenomenon where noninte-
ger calculus plays a central role. The solution of a fractional-
differential equation describing the correlation function was
presented in terms of roots of regular polynomials. It was
shown that for ��1 there is no unique way to define an
overdamped or underdamped motion. Three definitions were
proposed for the frequency of transition, i.e., �c, �m, and �z.
We observed the existence of a phase transition for a critical
�=�c�0.402, where for ���c Cx�t� does not decay mono-
tonically for any �	0. Physically it is explained using the
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one maximum for ���
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� as a function of
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cage effect: a rattling motion of the particle in the cage
formed by the surrounding particles. The response to a time-
dependent field in terms of the complex susceptibility ��
�
was also calculated and similar critical �’s were found. Par-
ticularly for ���R=0.441. . ., the system will always be in
resonance with the external field for a particular 
 and any �
and �, even in the case of a free particle ��=0�. For the loss,
the imaginary part of the complex susceptibility, ���
�, two
phases were defined: �i� the one-peak phase where the com-
plex susceptibility obtains only one maximum as in a regular
case, and �ii� the double-peak phase, where the complex sus-
ceptibility obtains two maxima. A phase diagram was pre-
sented. Two critical exponents ��1

=0.527. . . and ��2
=0.707. . . were found for ���
�, exponents which define the
boundaries of the phase diagram. In conclusion, critical ex-
ponents like �c, �R, ��1

, and ��2
mark sharp transitions in

the behaviors of systems with fractional dynamics. Thus,
these critical exponents are clearly important and general in
the description of anomalous kinetics.
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APPENDIX A: THE SOLUTION FOR NONDISTINCT

ZEROS OF P̂(s)

In this appendix we derive the solution of Eq. �12� for the

case when two zeros of P̂�s� coincide. This means that P̂�s�
has 2q−2 distinct zeros of order 1 and one zero of order 2.
Namely, at the critical point �c only two ak coincide and we
present here a method of solution for �=�c.

Starting with Eq. �12�, we write the partial fraction expan-
sion in the following way:

1

P̂�s�
= �

k=1

2q−1
Ak

s − ak
+

Ã

�s − a2q−1�2 , �A1�

where ak are the zeros of P̂�s� and we assign a2q−1 to be the

zero of the second order. Ak and Ã are given by

Ak =
1

 dP̂�s�

ds


s=ak

, 1 � k � 2q − 1, �A2�

A2q−1 = − �
k=1

2q−2

Ak, �A3�

and

Ã =
1

 d

ds

P̂�s�

s − a2q−1


s=a2q−1

. �A4�

Using the relation �21�

�
k=1

2q−1

ak
mAk + mak

m−1Ã = 0, m = 0,1, . . . ,2q − 2, �A5�

one finds that

sm

P̂�s�
= �

k=1

2q−1
Akak

m

s − ak
+

ma2q−1
m−1 Ã

s − a2q−1
+

a2q−1
m Ã

�s − a2q−1�2 , m

= 0,1, . . . ,2q − 1. �A6�

Hence using Eqs. �12�, �18�, and �A6�

Ĉx�s� = �
m=0

2q−1

�
j=0

q−1 
 �
k=1

2q−1
ak

mAkB̃mj

s − ak
s−j/q +

ma2q−1
m−1 ÃB̃mj

s − a2q−1
s−j/q

+
a2q−1

m ÃB̃mj

�s − a2q−1�2s−j/q� , �A7�

and it is only left to perform an inverse Laplace transform of
1 / �sj/q�s−a2q−1�2�, using the convolution theorem

1

sj/q�s − a2q−1�2 •–�
tea2q−1t

�� j
q�a2q−1

j/q �
 j

q
,a2q−1t�

−
ea2q−1t

�� j
q�a2q−1

j/q+1�
 j

q
+ 1,a2q−1t� �A8�

or the Mittag-Leffler function

1

sj/q�s − a2q−1�2 •–� tj/q+1E1,1+j/q�a2q−1t�

−
j

q
tj/q+1E1,2+j/q�a2q−1t� . �A9�

Finally, using Eqs. �21�, �A7�, and �A8�,

Cx�t� = �
m=0

2q−1

�
j=0

q−1
B̃mj

��j/q�� �
k=1

2q−1

ak
m−j/qAke

akt�
 j

q
,akt�

+ a2q−1
m−j/qÃea2q−1t��t + ma2q−1

−1 ��
 j

q
,a2q−1t�

− a2q−1
−1 �
 j

q
+ 1,a2q−1t��� , �A10�

or using Eq. �A9�

Cx�t� = �
m=0

2q−1

�
j=0

q−1

B̃mjt
j/q� �

k=1

2q−1

ak
mAkE1,1+j/q�akt� + a2q−1

m Ã

�
�t + ma2q−1
−1 �E1,1+j/q�a2q−1t� −

j

q
tE1,2+j/q�a2q−1t��� .

�A11�

A final remark: one can show that for our case of integer q

	 p	0, third- and higher-order zeros of P̂�s� do not exist.
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APPENDIX B: EXPLORATION OF EQ. (80)

In this appendix we prove the existence of �R for a FLE
with a harmonic force and derive the equation for g��� given
by Eq. �82�. Solving Eq. �80�, one gets for � /
R

2−�

�


R
2−� =

1

2�
��2 − �y�cos
��

2
��

�
1

2�
���2 − �y�2cos
��

2
��2

+ 8�y = q1��y� ,

�B1�

and y= ��2 /
R
2 −1�	−1. Writing the left-hand side of Eq.

�B1� in terms of y,

�


R
2−� =

�

�2−� �y + 1�1−�/2 = q2�y� . �B2�

We see that for the extremal points of R�
� the functions
q1��y� and q2�y� cross each other �see Fig. 14�. While q2�y�
is a monotonically increasing function starting from zero for
y=−1 and growing as y1−�/2 for large y, q1��y� constructs
two branches where q1+�y� is the upper branch and q1−�y� is
the lower branch and for some point y�

q1−�y�� = q1+�y�� =
�2 − �y��cos���/2�

2�
. �B3�

If y��−1 then q2�y� crosses q1��y� no matter what the pa-
rameters �, �, and � are, because in that case for y=−1

q1��y�	0 and q2�y�=0 and a resonance is always obtained.
The point y� is derived from Eq. �B1� and determined by the
following relation:

�2 − �y��2cos2
��

2
� + 8�y� = 0. �B4�

Solving Eq. �B4� in terms of y�, one finds

y� = −
2

� cos2���/2��1 − sin
��

2
��2

, �B5�

where we took the − sign because y	−1. For 0���1 Eq.
�B5� is an increasing function of � and so we have a critical
�, �R, for y�=−1. Equation �B4� with y�=−1 is exactly Eq.
�77�, which defines the equation for �R, and so we have
shown the existence of �R for the harmonically bound par-
ticle.

We now argue that the boundary between the resonance
phase and no-resonance phase is given by the following
relation:

�

�1/2−� = g��� , �B6�

where g��� is dependent only on � and equals zero for �
��R. One readily sees from Eq. �B1� that the large-y behav-
ior of q1��y� is proportional to ��y, where q2�y� behaves
like y1−�/2 for large y �Eq. �B2��; also we note that

dq1��y�
dy and

dq2�y�
dy are monotonically decaying functions of y. As a result

we have four options for the scenario of q2�y� crossing
q1��y� �see also Fig. 14�: �i� q2�y1�=q1−�y1� and q2�y2�
=q1+�y2� for y1�y2; �ii� q2�y1�=q1+�y1� and q2�y2�
=q1+�y2� for y1�y2; �iii� q2�y�=q1+�y� for a single y; and
�iv� q2�y��q1+�y� and q2�y��q1−�y� for any y.

When there are two crossings then the one with the larger
y corresponds to the minimum and the smaller y corresponds
to the maximum and belongs to the resonance phase. When
there are no crossings then we are in the no-resonance phase.
The scenario �iii� corresponds exactly to the boundary be-
tween the two phases. In order to find the boundary, two
conditions must be satisfied:

q2�y1� = q1+�y1� �B7�

and

dq2�y�
dy 	y=y1	 =

dq1+�y�
dy 	y=y1	, �B8�

as illustrated in Fig. 14�c�. Starting from Eq. �B7� we com-
pare the left-hand side to some constant c and using Eq. �B2�
we find

y = c2/�2−��
 �

�1/�2−���2

− 1. �B9�

Comparing the right-hand side of Eq. �B7� to the same c and
using Eq. �B9� we arrive at the relation
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FIG. 14. �Color online� Four scenarios for q1��y� and q2�y�
crossings. Existence of a crossing corresponds to the resonance
phase and no crossings correspond to the no-resonance phase. �a�
�=0.441, �=2, and �=1; for this case there will always be two
crossings, ���R. �b� �=0.6, �=1.75, and �=1; this panel corre-
sponds to a resonance phase. �c� �=0.5, �=4.4, and �=1, this
panel describes a situation on the boundary between resonance and
no-resonance phases. �d� �=0.5, �=10, and �=1, a no-resonance
phase.
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�1/�2−���2

=
c2 − c cos���/2��1 + 2/�� + 2/�

2/� − c cos���/2�
c−2/�2−��.

�B10�

Next, performing the derivation in Eq. �B8� and using Eq.
�B9� we find


 �

�1/�2−���2

=
�2 − ��c�2c − �1 + �2/��cos���/2���
4/� − 4c cos���/2� + �c cos���/2�

c−2/�2−��.

�B11�

Comparison of Eqs. �B11� and �B10� supplies an equation
for c:

�3 cos
��

2
�c3 + �2� − 5�2 − ��2 + ��cos�����c2

+ 12� cos
��

2
�c − 8 = 0. �B12�

Equation �B12� has three different solutions where only one
is real for 0���1. We will call it c��� and

c��� =
1

3�3�sec
��

2
��− 2� + 5�2 + 2� cos���� + �2 cos���� − �25/3�2 sin2
��

2
��− 4 + 20� − 7�2 + �2 + ��2cos������

− 80�3 + 312�4 − 384�5 + 152�6 − 3�3�− 40 + 132� − 126�2 + 43�3�cos���� − 48�3 cos�2��� + 72�4 cos�2���

− 24�6 cos�2��� + 8�3 cos�3��� + 12�4 cos�3��� + 6�5 cos�3���

+ �6 cos�3���24�6�− �9 cos2
��

2
��32 − 204� + 204�2 − 59�3 + �2 + ��2�− 8 + 5��cos����sin4
��

2
��

+
1

21/3
�− 80�3 + 312�4 − 384�5 + 152�6 − 3�3�− 40 + 132� − 126�2 + 43�3�cos���� − 48�3 cos�2���

+ 72�4 cos�2��� − 24�6 cos�2��� + 8�3 cos�3��� + 12�4 cos�3��� + 6�5 cos�3���

+ �6 cos�3���24�6�− �9 cos2
��

2
��32 − 204� + 204�2 − 59�3 + �2 + ��2�− 8 + 5��cos����sin4
��

2
���1/3�� .

�B13�

We thus justified the use of Eq. �B6� and g��� is given by Eq. �82�.

APPENDIX C: EXPLORATION OF d��(Ω) ÕdΩ

We start with the exploration of d���
� /d
, where ���
� is given by Eq. �84�,

d���
�
d


=
�
�+3sin���/2�

���2 − 
2�2 + �2
2� + 2���2 − 
2�
� cos���/2��2���
wz
2


2 − 1�2

+ 
 �


2−��2

+ 2
�2


2 − 1�
 �


2−��cos
��

2
��

− �− 4
�2


2 − 1� + 2�
 �


2−��2

+ 2��
�2


2 − 1� − 2�
 �


2−��cos
��

2
��� , �C1�

and we easily see that in order that d���
�
d
 =0 the following

condition must be satisfied:

�
 �


2−��2

− 4
 �


2−��cos
��

2
� − �4y + �y2� = 0,

�C2�

where y= � �2


2 −1�	−1. The left-hand side of Eq. �C2� is a
second-order polynomial in terms of �


2−� , which is easily
solved:


 �


2−�� =
4 cos���/2�

2�

�
1

2�
�16 cos2
��

2
� + 4��4y + �y2� .

�C3�

The right-hand side of Eq. �C3� we will call q̃1��y� and the
left-hand side q̃2�y�:
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q̃2�y� =
�

�2−� �y + 1�1−�/2. �C4�

The crossings of q̃1��y� and q̃2�y� determine the extremal
points of ���
�, and using the fact that for y→� q̃2�y�
�y1−�/2 and q̃1��y��y, we have six different scenarios for
the crossing of q̃2�y� and q̃1��y�: �i� q̃2�y�= q̃1−�y� for a
single y and there are no other crossings; �ii� q̃2�y1�
= q̃1−�y1� and q̃2�y2�= q̃1+�y2� for y1�y2; �iii� q̃2�y1�
= q̃1−�y1�, q̃2�y2�= q̃1+�y2�, and q̃2�y3�= q̃1+�y3� for y1�y2
�y3; �iv� q̃2�y1�= q̃1+�y1�, q̃2�y2�= q̃1+�y2�, and q̃2�y3�
= q̃1+�y3� for y1�y2�y3; �v� q̃2�y1�= q̃1+�y1� and q̃2�y2�
= q̃1+�y2� for y1�y2; and �vi� q̃2�y�= q̃1+�y� for a single y and
there are no other crossings.

Generally if there is only one crossing, scenarios �i� and
�vi�, the meaning is that ���
� will have only one maximum;
on the contrary, when there are three crossings, scenarios �iii�
and �iv�, there are two maxima and one minimum for ���
�.
These correspond to two different phases the one-peak and
the double-peak phase, where the scenarios �ii� and �v� are
the boundaries between these phases. We are interested in
finding these boundaries, where for scenario �ii� and �v� two
conditions must be satisfied:

q̃2�y1� = q̃1+�y1� �C5�

and

dq̃2�y�
dy


y=y1

= dq̃1+�y�
dy


y=y1

. �C6�

Starting from Eq. �C5� we compare the left-hand side to
some constant c̃ and using Eq. �C4� we find

y = c̃2/�2−�� �2

�2/�2−�� − 1. �C7�

Comparing the right hand side of Eq. �C5� to the same c̃ and
using Eq. �C7� we arrive at the relation


 �

�1/�2−���2

= �1 −
2

�

+
1

2
�16

�2 − 4
4 cos���/2�
�

c̃ − c̃2��c̃−2/�2−��.

�C8�

Next, performing the derivation in Eq. �C6� and using Eq.
�C7� we find


 �

�1/�2−���2

= �1

2
−

1

�
+

1

2
��4 − 2��2

4�2 + c̃
2 − �

�
��2�c̃ − 4 cos
��

2
���c̃−2/�2−��. �C9�

Comparison of Eqs. �C8� and �C9� supplies an equation for c̃:

4�2c̃4 − 16 cos
��

2
��2 + ��c̃3 +

16

�2�− 4 + 8� − �2 + cos2
��

2
��2 + ��2�c̃2 −

64

�2 cos
��

2
��6 − ��c̃ +

64

�3 �4 − �� = 0.

�C10�

Equation �C10� is a fourth-order polynomial and could be solved by standard methods or using MATHEMATICA. It has four
different solutions of which two have nonzero imaginary parts for any 0���1, while the other two have no imaginary part
for ����2

�0.70776. Let us call these solutions c̃1��� and c̃2���. A nonzero imaginary part for �	��2
of both c̃1��� and

c̃2��� means that only scenario �vi� is applicable for such �’s and we are in the one-peak phase. The boundaries between the
two phases are given by

�

�1/�2−�� = g̃1,2��� =�1 −
2

�
+

1

2
�16

�2 − 4
4 cos���/2�
�

c̃1,2��� − c̃1,2
2 ����c̃1,2

−1/�2−����� , �C11�

where the subscript 1 is for the lower bound g̃1��� and sub-
script 2 is the upper bound g̃2��� in Fig. 12. For g̃1��� there
is also another interesting point ��1

=0.527 031 which satis-
fies the following relation:

��1

2 − 4��1 + 4 cos2
���1

2
� = 0, �C12�

for ����1
, g̃1���=0.
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